Ne'epapa Ka Hana Mathematics Resources **Professional Development Course**

Video 1 Example Activities

Project Director

Content Developer

Kaveh Abhari

Robert G. Young

Send questions/comments to rgyoung@hawaii.edu

Ι

Ne'epapa Ka Hana 2.0

STEMD2 R&D Group

Last update: June 28, 2020

stemd2.com

I

Seven (7) friends are reheating some leftover pizza for lunch. In the refrigerator are two slices of different sizes. One slice is one-quarter (1/4) of a whole pizza and the other slice is one-third (1/3) of a pizza.

In order to share the pizza equally, one person suggests to cut it up into **one-twelfth** (1/12) size slices. Does this work? Please explain why or why not.

Inoa (Name):	
Lā (Date):	

Let's learn about the rules of independent events using two six-sided dice.

Trial	First die	Second die	Sum of the two dice
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

- 1. Roll the two dice 20 times and complete the following table.
- 2. Summarize the data you collected.
 - (a) Total number of trials: <u>20</u>
 - (b) Total number of 6's from the first die roll:
 - (c) Total number of 6's from the second die roll:
 - (d) Total number of 12's from the sums of the two dice:
 - 3. Share your data with the class.
 - 4. Summarize the class data.
 - (a) Total number of trials:
 - (b) Total number of 6's from the first die roll:
 - (c) Total number of 6's from the second die roll:
 - (d) Total number of 12's from the sums of the two dice: _____
 - 5. Calculate the following probabilities:(a) Rolling a 6 with the first die:
 - (b) Rolling a 6 with the second die:
 - (c) Rolling a 12 with both dice:
 - 6. What do you think is the relationship between the answers from Part 5?

Reflect Pikachu about the *y*-axis, then rotate Pikachu 90° counter-clockwise about the origin. Draw the **final Pikachu**. Hint: it might help to do a rough sketch of Pikachu after the first reflection.

Reflect Patrick about the *y*-axis, then translate Patrick 10 units left. Draw the **final Patrick**. Hint: it might help to do a rough sketch of Patrick after the first reflection.

We're going to look at some popular racing sports and learn about how competitive they are.

- 1. Choose a famous race. E.g. Moloka'i Hoe, Nā Wāhine O Ke Kai, Great Aloha Run, Ironman Triathlon etc.
- 2. Look online for a list of the top twenty winners. Write down the team/athlete and their finishing times. Depending on the type of race, you might have to convert to minutes or seconds.

Team/Athlete	Finishing Time

3. Create a stem and leaf plot with the data you collected.

4. Does your data suggest that the race you chosen is highly competitive? How do you know?