Ne'epapa Ka Hana Mathematics Resources Professional Development Course
 Video 1 Example Activities

Project Director Kaveh Abhari
Content Developer
Robert G. Young
\qquad
Lā (Date): \qquad

Seven (7) friends are reheating some leftover pizza for lunch. In the refrigerator are two slices of different sizes. One slice is one-quarter $(1 / 4)$ of a whole pizza and the other slice is one-third $(1 / 3)$ of a pizza.

In order to share the pizza equally, one person suggests to cut it up into one-twelfth (1/12) size slices. Does this work? Please explain why or why not.

```
Inoa (Name):
```

\qquad
Lā (Date): \qquad

Let's learn about the rules of independent events using two six-sided dice.

1. Roll the two dice 20 times and complete the following table.

Trial	First die	Second die	Sum of the two dice
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

2. Summarize the data you collected.
(a) Total number of trials: 20
(b) Total number of 6's from the first die roll: \qquad
(c) Total number of 6's from the second die roll: \qquad
(d) Total number of 12 's from the sums of the two dice: \qquad
3. Share your data with the class.
4. Summarize the class data.
(a) Total number of trials: \qquad
(b) Total number of 6's from the first die roll: \qquad
(c) Total number of 6 's from the second die roll: \qquad
(d) Total number of 12 's
from the sums of the two dice: \qquad
5. Calculate the following probabilities:
(a) Rolling a 6 with the first die: \qquad
(b) Rolling a 6 with the second die: \qquad
(c) Rolling a 12 with both dice: \qquad
6. What do you think is the relationship between the answers from Part 5?

$$
\begin{aligned}
& \text { Inoa (Name): } \\
& \text { Lā (Date): }
\end{aligned}
$$

Reflect Pikachu about the y-axis, then rotate Pikachu 90° counter-clockwise about the origin. Draw the final Pikachu. Hint: it might help to do a rough sketch of Pikachu after the first reflection.


```
Inoa (Name):
```

\qquad

```
    Lā (Date):
```

\qquad

Reflect Patrick about the y-axis, then translate Patrick 10 units left. Draw the final Patrick. Hint: it might help to do a rough sketch of Patrick after the first reflection.

\qquad
Lā (Date): \qquad

We're going to look at some popular racing sports and learn about how competitive they are.

1. Choose a famous race. E.g. Moloka'i Hoe, Nā Wāhine O Ke Kai, Great Aloha Run, Ironman Triathlon etc.
2. Look online for a list of the top twenty winners. Write down the team/athlete and their finishing times. Depending on the type of race, you might have to convert to minutes or seconds.

Team/Athlete	Finishing Time

3. Create a stem and leaf plot with the data you collected.
4. Does your data suggest that the race you chosen is highly competitive? How do you know?
